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Abstract

Recently, significant progress has been made in single-
view depth estimation thanks to increasingly large and di-
verse depth datasets. However, these datasets are largely
limited to specific application domains (e.g. indoor, au-
tonomous driving) or static in-the-wild scenes due to hard-
ware constraints or technical limitations of 3D reconstruc-
tion. In this paper, we introduce the first depth dataset
DynOcc consisting of dynamic in-the-wild scenes. Our
approach leverages the occlusion cues in these dynamic
scenes to infer depth relationships between points of se-
lected video frames. To achieve accurate occlusion detec-
tion and depth order estimation, we employ a novel oc-
clusion boundary detection, filtering and thinning scheme
followed by a robust foreground/background classification
method. In total our DynOcc dataset contains 22M depth
pairs out of 91K frames from a diverse set of videos. Using
our dataset we achieved state-of-the-art results measured in
weighted human disagreement rate (WHDR). We also show
that the inferred depth maps trained with DynOcc can pre-
serve sharper depth boundaries.

1. Introduction

Human visual system can perceive depth from a sin-
gle view using various monocular cues such as shading,
perspective and occlusions. These cues have been used
to develop various techniques to teach machines perceive
depth information from monocular inputs, such as shape-
from-shading [38], structure-from-vanishing-points [4] and
structure-from-occlusions [29]. However, these techniques
usually pose serious assumptions on the inputs which often
lead to mixed degrees of success in practice.

Recently, with the advent of deep learning and afford-
able depth sensing hardware, significant progress has been
made in single-view depth estimation by using the powerful
deep learning machinery to harness the increasing amount
of available depth data. Many depth datasets emerged, such
as NYUDv2 [21], ScanNet [5], Make3D [23] and KITTI [8]
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Figure 1. Occlusion cues are prevalent in videos with dynamic
scenes, from which pairs with relative depth orders (blue regions
are closer than red regions) could be extracted to facilitate the
learning of single-view depth estimation.

datasets. Synthetically-generated depth datasets also be-
come available, including SceneNet [20] and SUNCG [25].
However, these datasets usually address a specific scenario
such as indoor scenes or autonomous driving due to limited
hardware capability or acquisition budget. To further im-
prove the performance, more diverse in-the-wild datasets
are proposed. Chen et al. [2] crowdsourced the label-
ing efforts and created DIW dataset that provides pairwise
depth labels for a large number of in-the-wild internet im-
ages. Despite its unprecedented data diversity, DIW dataset
contains only sparse ground-truth labels, and it is labor-
intensive to scale up to more data. Follow-up work there-
fore resort to using 3D reconstruction techniques to auto-
matically generate 3D geometry ground-truth from in-the-
wild images and videos, such as ReDWeb [33] using stereo
images for disparity maps, YouTube3D [3] using structure-
from-motion for sparse point pairs, MegaDepth [17] and
Mannequin [16] using structure-from-motion and multi-
view stereo for dense depth maps. These automatically-
reconstructed datasets, due to its technical limitations, can
only include static scenes. Even if Mannequin [16] claims
that the resulting system can handle dynamic scenes, the
fact that it is derived from a special kind of video creation
technique still poses limitations on the type of scenes it can
cover.

In this paper, we propose DynOcc, the first depth dataset
that consists of dynamic in-the-wild videos. For each video,
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Dataset Scene Type Dynamic Scene # Images # Training Pairs/Image
NYUDv2 [21] indoor 7 795 dense

KITTI [8] street 7 93K dense
MegaDepth [17] landmarks 7 130K dense

DIW [2] in-the-wild 7 496K 1
Mannequin [16] people 7 170K dense
ReDWeb [33] in-the-wild 7 3.6K dense

YouTube3D [3] in-the-wild 7 795K 281
DynOcc (Ours) in-the-wild 3 91K 240

Table 1. A comparison between existing depth datasets and our DynOcc dataset in terms of scene types, dynamic or static, numbers of
images and numbers of pairs per image if available. Our DynOcc dataset contains a large amount of relative depth pairs automatically
extracted from dynamic in-the-wild videos.

we provide a number of relative depth pairs for each se-
lected frame in the video. To create these relative depth
pairs, we revisit the idea of occlusion cues explored in the
previous work [27] and propose a novel occlusion detection
scheme that works well for in-the-wild videos. First, we
detect possible occlusion boundaries in a video using two-
way optical flow. We then employ a filtering and thinning
step that significantly improves the boundary localization
accuracy. Next, to robustly determine the occlusion rela-
tionship between the two sides of the occlusion boundaries,
we move the occlusion boundary by the optical flow vector
of each side and check if the boundary is aligned in the next
frame; the side with the optical flow vector that aligns the
boundary is considered occluding the other side. Finally, we
sample in both the occluding and the occluded sides to form
depth pairs. In total, we generated 22M depth pairs out of
91K video frames. Our videos are taken from the YouTube-
VOS dataset [35]. A comparison of our depth dataset and
other depth datasets is provided in Table 1. It should be
noted that while we used the YouTube-VOS dataset in this
paper, videos with dynamic scenes are much more prevalent
than the ones with only static scenes, and our dataset can be
easily scaled up with the proposed method.

To evaluate our DynOcc dataset, we follow the training
protocol in [2] using DynOcc and compare the weighted
human disagreement rates (WHDR) to various baselines.
We achieve state-of-the-art WHDR (10.24%) by combin-
ing both YouTube3D and DynOcc datasets. When we train
with DynOcc, we can still achieve 10.63% WHDR, which
is lower than 10.73% in our implementation of [3] and
comparable to 10.59% WHDR as reported in their paper.
These results show that DynOcc is a valuable dataset to im-
prove current state-of-the-art single-view depth estimation
systems since it includes more dynamic scenes. We also
observe that the inferred depth maps trained with DynOcc
preserve sharper depth boundaries thanks to our data dis-
tribution more focused on occlusion boundaries. We also
perform an ablation study on various depth pair sampling
strategies as shown in Table 3.

To sum up, our contributions are:

� The DynOcc dataset, the first depth dataset for dy-
namic in-the-wild videos.

� A state-of-the-art single-view depth estimation system
trained with DynOcc dataset.

� A robust occlusion boundary detection and
foreground-background classification method that
works well for dynamic in-the-wild videos.

2. Related Work

Numerous supervised and unsupervised methods [2, 6,
7, 10, 15, 17, 19, 24, 30, 34, 36, 37, 39, 40] have been pro-
posed to estimate dense depth information from a single
RGB image or monocular video. A comprehensive survey
of different learning mechanisms is beyond the scope of the
paper. We mainly review those methods that generate train-
ing depth datasets from various sources.

Depth sensors A number of RGB-D datasets have been
captured with depth sensors, which significantly boost
the early research of single view depth estimation meth-
ods [1, 5, 8, 9, 21]. However, these datasets are usually cap-
tured in indoor scenes with limited depth range [1, 5, 21]
or from specific outdoor applications such as autonomous
driving [8, 9]. Learning from these datasets alone might
pose generalization difficulties for real world scenes.

Synthetic data Another source of RGB-D datasets is syn-
thetic data from realistic rendering techniques [11, 18, 25].
These datasets provide high quality RGB-D paired data,
which have been shown to be effective for single view tasks
such as surface normal prediction [26] and object recon-
struction [32]. But similar to depth sensors, the diversity
of the synthetic data is limited by various factors such as
rendering capabilities, asset categories and scene layouts.



Depth from manual labeling One common limitation
with both depth sensors and synthetic data is that pixel
depths are encoded with absolute metric values, which is
inherently ambiguous under single view settings [2]. There-
fore some recent methods propose to use relative depth pairs
for single view depth estimation [2, 3, 16, 17, 33]. Chen
et al. �rst explored this idea by manually labelling relative
depth pairs in a large-scale image dataset [2]. Their “Depth
in the wild” (DIW) dataset, when combined with existing
RGB-D data, signi�cantly improves depth prediction accu-
racy for real world scenes [17].

Depth from 3D reconstruction Some recent methods fo-
cus on generating relative depth pairs automatically with 3D
reconstruction techniques [3, 16, 17, 33]. Xianet al. [33]
created the ReDWeb dataset by collecting depth maps from
calibrated stereo images; while the MegaDepth dataset pro-
posed by Liet al. [17] performs Structure-From-Motion
(SFM) on online internet photos. Following this line, Chen
et al. [3] recently released a large-scale YouTube3D dataset,
which extracts relative depth pairs from monocular videos
with a quality assessment network and SFM. Compared
to stereo images and internet photo collections, monocu-
lar videos are more accessible with less capturing bias, but
an inherent limitation with SFM is that it can not robustly
handle videos with dynamic objects such as human beings.
Li et al. [16] tackled this problem by using SFM on spe-
ci�c internet videos with frozen people and moving cam-
eras. Their Mannequin dataset shows great improvement
over human depth prediction in single view images.

Depth from occlusions Different from previous methods
that rely on 3D reconstruction techniques, we employ the
monocular depth cue of dynamic occlusion boundaries. Our
method is inspired by the classic �gure/ground detection
work in [27]: Sundberget al. show that optical �ow near
occlusion boundaries can help determine �gure/ground in
adjacent regions, which forms a natural data source for rel-
ative depth pairs. While this work has been followed up
from various perspectives such as depth densi�cation [13],
object segmentation [22], stereo vision [31] and light �eld
[28], its potential has not been fully exploited in single view
depth prediction studies. Compared to multi-view recon-
struction techniques, dynamic occlusion boundaries can be
computed from a much wider range of videos, with fewer
restrictions on object and camera movement. We show that
relative depth data extracted from occlusion boundaries is a
useful complement to existing depth datasets.

3. Approach

As shown in Table 1, existing training datasets for single-
view depth estimation either require great effort to acquire

(hardware capture/manual labeling), or are limited to spe-
ci�c scenarios (static scenes). In this work, we propose
a method to extract depth occlusion cues from arbitrary
videos in the wild, which makes the acquisition of depth
training data much easier and more scalable. We show some
sample images from our DynOcc dataset in Fig 4. Our
method contains two major steps: occlusion boundary de-
tection and depth order estimation, which we describe in
detail in Section 3.1 and Section 3.2, respectively. Based
on the estimated occlusion cues, we present our depth pair
sampling strategy for training in Section 3.3. Finally, the de-
tails of generating the dataset are described in Section 3.4.

3.1. Occlusion Boundary Detection

Given a video with a dynamic scene, the most reliable
relative depth cues would come from the regions near the
occlusion boundaries, as the occluding regions next to the
boundaries are apparently closer than the occluded regions.
Therefore, as the �rst step of our training data generation
pipeline, occlusion boundaries are extracted in each frame.

There are several prior works that try to extract occlu-
sion boundaries in video frames using optical �ow [27, 13].
In particular, Holynski and Kopf [13] proposed a two-step
approach to extract occlusion boundaries for depth densi�-
cation, where a soft depth edge map is generated by calcu-
lating �ow gradients, from which exact depth edges are then
extracted and connected using Canny edge detector. While
the extracted edges are mostly clean and complete in their
work, we observed that some text edges are misclassi�ed
as depth edges as well due to the inclusion of Canny edges,
which will yield incorrect relative depth pairs and largely
affect the training of the depth estimation network.

To ensure the precision of the extracted depth edges, we
chose not to use the Canny edges, and instead largely follow
the �rst step in [13] to obtain the soft depth edge map, and
then keep the most con�dent ones with edge thinning and
thresholding.

In particular, we use FlowNet 2.0 [14] to compute a
dense �ow �eld, and identify the regions with large �ow
magnitudejjr F jj1, since large changes in the �ow corre-
spond to depth discontinuities because of parallax. As ob-
served in [13], optical �ow is usually not reliable near con-
verging occlusion boundaries, where the �ow directions of
the two sides next to the boundary are converging to each
other, and the pixels on the occluded side are not visible in
the nearby frame. On contrary, the �ow near the diverg-
ing boundaries are more reliable, as the occluding region is
leaving the occluded one, and pixels on both side are visible
in the nearby frame.

Therefore, we compute two �ow �eldsFprev andFnext

w.r.t. two nearby frames, one backward and one forward,
and only retain the diverging edges of the two �ow �elds as
our occlusion boundary candidates. Speci�cally, we calcu-




